
Spectral Core

Archiving via DB conversion

 Damir Bulic • dbulic@spectralcore.com • @BulicDamir

mailto:dbulic@spectralcore.com


Over 40 formats

• File-based


• Relational


• Cloud


• Data lakes

Databases supported



spectralcore.com/fullconvert

• Single-click migration


• Drivers built-in, no external 
dependencies


• Scheduler built-in for recurring 
migrations


• Console included for easy scripting


• Customers in more than 90 countries


• Many success stories


• Full SIARD support!

Full Convert

http://www.spectralcore.com/fullconvert


Distributed migration cluster

• Ideal solution for migrating databases on 
premises to the cloud


• Handles hundreds of terabytes easily


• Same ease of use as Full Convert, for the 
basic use-case


• Works on Windows and Linux


• Fetches data from several source 
databases via hundreds of connections 
from several agents, compresses and 
encrypts in-flights, ingests to the target


• Repartitions data on the fly

Omni Loader



DDL translation of very complex schema

• Custom parser generator engine


• 150x faster translation than closest 
competitor


• Goal of >98% fully automated 
translation


• Manual translation available for code 
that needs complete rewrite


• Static analysis used to generate tests


• Uses OmniLoader engine for data 
migration

SQL Tran



Database schema documentation

• Reads full database metadata 
(same engine as SQL Tran)


• Builds a HTML website with the 
navigable schema


• Discontinued! To be included 
into upcoming database 
manager.

Documenter



Archival needs today
We got you covered

• Full Convert supports SIARD for reading and writing


• Wide range of databases can be easily converted to SIARD with minimal work


• SIARD can be extracted to wide range of databases with minimal work


• Full customization available (renaming, mapping, BLOB placement)


• High performance reader and writer (limited by inherent limitations of SIARD 
format)



SIARD challenges
It's XML. Zipped XML.

• We can handle up to 16 connections to speed things up, but...


• ZIP writing can't be parallelized. I have a 12-core CPU. We generate as much as possible using all 
cores. In the end, just one core is used to compress data.


• XML is verbose and clunky


• XML is not well suited to handle a lot of data. We can spill BLOB data outside, but it's a clunky 
solution.


• Reasonably, SIARD is useful only for small datasets


• SIARD already can't handle much of what we see in real world today. Datasets are growing at 
extreme pace and I expect SIARD to be less applicable in the future.


• That's why SIARD is not supported in Omni Loader, our most powerful database migration software.



Looking into the future
Horizontal scaling

• Vertical scaling is dead. Moore's law is dead.


• Vertical scaling of a single server today is in reality a horizontal scaling - more cores, not faster 
cores.


• Looking at cloud, it is all about horizontal, on-demand scaling. This trend will continue.


• Workflows are moving away from personal computers. Developers are often remoting from 
laptops to remote development environments with less limitations (network, CPU).


• Data is streamed from many sources (IoT, heterogeneous databases) into specialized storage 
(data lakes, OLTP, OLAP, NoSQL)


• While we can expect relational engines to stay with us for a very long time, we can also expect 
new engines to appear. We have graph data, hierarchical data, custom data types, CLR types, 
spatial data etc.



Future proofing archives
A new archival data format

• As described in an email I sent


• In short:


• Separate structure for data and schema


• Compressed chunks of columnar data (we use that in Omni Loader already, similar to Parquet)


• Extensible data types


• Schema can be written in a single SQLite file (even though JSON would be good enough)


• Data should be written in one file, or many files on a local network, or anywhere in the world. 
Instead of referencing data separately for each value, we should be referencing a chunk of data.


• Data chunk can contain from a few records all the way to billions of records.



Discussion time.


